
Rotator control unit with Arduino Nano
Ing. Ján Uhrin, OM2JU

• Powered by 13.8V from the power supply to the transceiver

• Controls DC motor of rotator; In my case rotator has 24V DC motor, therefore using boost/converter to

generate 24V from 13.8V

• Displays current azimuth and other configuration data on 2x16 character display

• Easy operation and configuration using rotary encoder

• System menu and saving of important parameters to EEPROM

• Alternative control via serial port

• In Idle mode powered only by USB from PC/Notebook. With user outputs A, B relays can be controlled, e.g.

to switch on 13.8V power supply or control the antenna switch

Arduino code development in Visual Studio Code

I have used Microsoft Visual Studio Code to implement the code for Arduino Nano:

• Download and install Arduino IDE (https://www.arduino.cc/en/main/software) - this is needed for

background compilation of the code

• Install the latest version of Visual Studio Code (https://code.visualstudio.com/)

• Run Visual Studio Code and add extension Arduino for Visual Studio Code (author Microsoft)

• Configure the type of Arduino board, the COM port through which we load the program, etc. It is possible

either through the status bar at the bottom right or by editing the arduino.json configuration file

Projects should be placed in an existing directory of the Current user / Documents / Adruino, ideally generate a

simple example from the original Arduino IDE and modify this one. Furthermore, if the project uses existing libraries,

these must be downloaded in the original Arduino IDE, for example the TimerOne library, which will be mentioned

later. If there are problems with some libraries, it is necessary to check / add the correct paths in the

c_cpp_properties.json configuration file.

Figure - Visual Studio Code example, my favorite dark display theme , eye-friendly

https://translate.google.com/translate?hl=sk&prev=_t&sl=auto&tl=en&u=https://www.arduino.cc/en/main/software
https://translate.google.com/translate?hl=sk&prev=_t&sl=auto&tl=en&u=https://www.arduino.cc/en/main/software
https://translate.google.com/translate?hl=sk&prev=_t&sl=auto&tl=en&u=https://code.visualstudio.com/
https://translate.google.com/translate?hl=sk&prev=_t&sl=auto&tl=en&u=https://code.visualstudio.com/

Interrupts

I have long lived in the belief that Arduino libraries are so simplified that they do not allow use of interrupts.

Interrupts are very important for modern microprocessor systems, only by means of interrupts the dynamics and

reasonable response of the system to external events can be achieved. In the rotator control, we will use

interrupts in two places:

1. Counting pulses from incremental encoder on the pin D2 rotator

Pin D2 is configured so that a change in the input from 0 to 1 (rising edge) causes interrupt. The interrupt

handler routine only increases or decreases the pulse-counter based on the rotation direction which we

know.

Figure – Principle of incremental encoder

2. Serving of the quadrature rotary encoder which is used to navigate the menu / increment-

decrement values / also has the confirm pushbutton

On the output of the encoder are two quadrature signals phase shifted by 90 degrees. Their relative

phase is either +90 or -90 degrees depending on the direction of rotation. As in the case of 1 we could use

interrupt on rising edge of the A output, while in the service routine checking the value of B output to

determine direction. However, with mechanical contacts there is substantial noise on outputs, this would

lead to problems. Solution is to use lowpass RC filter on A and B outputs, or to use software solution

described below.

Figure – Quadrature encoder construction and output signals A and B

A possible solution is to sample the output signal fast enough to be able to detect the leading edge of one output

and at the same time slow enough to filter out the noise. For this purpose, a Timer interrupt is required to execute

the interrupt routine with a defined period. I found an elegant solution in library TimerOne, you need to download

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiTlrvv9JznAhXL5eAKHcMwBIgQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.analogictips.com%2Frotary-encoders-part-1-optical-encoders%2F&psig=AOvVaw2AcHEwxig_rfwRBz64GbNj&ust=1579978536698708
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiS-6nx-JznAhWQ0eAKHXQzB94QjRx6BAgBEAQ&url=https%3A%2F%2Fwww.ebay.ie%2Fitm%2FAlps-Electric-18-Pulse-Incremental-Mechanical-Rotary-Encoder-with-a-6-mm-Flat-Sh-%2F113090020629&psig=AOvVaw0ZRlv0kvJNmhjsXmUHbbGj&ust=1579979037120397
http://www.creative-robotics.com/quadrature-intro

this in the original Arduino IDE. I set the regular interrupt from the timer to 1.5 milliseconds, in the service routine I

check value of output A, and if I find pattern 0001 (a rising edge with filtered noise) I check the status of the other

output to determine the direction of rotation. Moreover, this solution allowed me to realize a dynamic increase by

the addition / subtraction rate depending on the rotation speed. This is practical if we need to quickly change the

azimuth by a larger value, we simply rotate the knob faster.

Components used to sense rotation of motor

I have used single channel incremental encoder with photointerrupter e.g. TCST1230 from Vishay. My goal was to

use only single wire to get the pusle information from rotator to hamshack. As the DC motor of rotator is powered

by either negative or positive voltages depending on direction, I had to rectify the DC motor voltage using diode

bridge. Series resistor value for diode in photointerupter needs to be properly calculated.

Figure – Pulse counting in rotator

Down in hamshack in Arduino control unit I use additional optocoupler (FOD817 from OnSemi) to avoid problems

with overvoltages on long wires and to protect the microcontroller input. The FOD817 needs 20mA for driving ot the

IR diode, thus with 5V power supply and substracting forward voltage on IR diode of 1.2V we get roughly 150Ohm

for series resistor.

Control of the rotator DC motor

The simplest and most robust solution is using relays in H-bridge topology. For control by logic signals from

microcontroller additional NPN or MOSFET-N transistors are needed. Don’t forget antiparallel diodes on relays to

protect the transistors from damage caused by spikes during switching-off.

Figure - H-bridge implemented using relays

Today, semiconductor H-bridges are popular too, they have many protection features and allow much faster control.

Simple and very popular device for stepper motor control is L298N from ST Microelectronics, it contains two

independently controllable H-bridges rated to switch max. 45V / 2A. If more (double) corrent is needed they can be

connected in parallel. I have used ready module with L298N which can be found on eBay – „Dual H Bridge DC

Stepper Motor Drive Controller Board Module L298N“.

Figure - Dual H Bridge DC Stepper Motor Drive Controller Board Module L298N

This module has populated protection diodes which protect sensitive high power transistors against spikes. In

addition, this module contains linear regulator 78M05 which I use to power Arduino Nano board. However, be

careful with maximum allowed voltage for this regulator. For powering of DC motor (thus L298N too) I use 24V which

would damage this regulator, therefore I have disconencted J8 and connected 13.8V to J8-2 pin (figure below).

Figure – Schematic of Dual H Bridge DC Stepper Motor Drive Controller Board Module L298N

Each of the two H-bridges in L298N has separate enable signal which, if inactive completely disconnects the power

part, thus power is saved. If only one H-bridge is used the Enable signal of the second one should be connected to

ground.

Boost converter 13.8V → 24V

I need 24V for rotator DC motor. Again, I have found on eBay ready boost converter module XL6009 capable of

boosting up to 35V with current of 2A. Output voltage is adjusted by multiturn potentiometer, the switching

frequency is rather low, no problems with EMI to my TRX.

Figure – Module with boost converter XL6009

Brief description of Arduino schematic and function

As the schematic is simple I have used detachable wires to connect Arduino with rotary encoder, display and H-

bridge.

The Arduino Nano pins have the following functions:

• D2 – pulses from incremental encoder; isolated by FOD817 optocoupler. On the output side I have used

around 1k resistor to connect open collector to 5V.

• D3, D4 – A, B inputs from incremental encoder; pullup resistors are not needed

• D5 – input from rotary encoder push button; pullup resistor is not needed

• D6 – user output B – with transistor I’m switching 5V relay to turn on the power for 13.8V TRX supply. Don’t

forget antiparallel diode around relay. Note that the relay must be 5V as initially during power down Arduino

board is powered only from USB (5V).

• D7, D8, D9, D10, D11, D12 – connection to 2x16 character LCD display used in 4-wire setup (RS, E, D4, D5,

D6, D7). R/W input of LCD display is connected to ground as only write to display is executed. Setting of the

display contrast is achieved with voltage divider

• D13 – Controls backlight of the display; in case of longer inactivity backlight goes off

• A0 – H-bridge control, side 1 (left)

• A1 - H-bridge control, side 2 (right)

• A2 – Enable for H-Bridge

• A3 – user output A; similar to user output B, however in my case I’m controlling 24V relay of antenna switch

Pins A4, A5 can be used to extend user outputs, in that case sowtware needs to be slightly extended too.

Pins A6, A7 – due to limitation of microcontroller these ca nbe used only as analog inputs; thus not used in our case.

Figure - Arduino Nano board

Initial powering of Arduino board is via USB, thus it is always ready to cummunicate over serial port. Idea of using

this control unit with serial port is following:

• PC/Notebook sleeps, only USB to which Arduino board is connected is powered

• Wake-up the PC/Notebook remotely

• Using serial console I turn on the User output B – 13.8V for TRX and Arduino Board is available

• Now rotator can be controlled as it has 24V. Similarly with antenna switch.

• Of course, local control of rotator using rotary encoder is always possible, information is displayed on

connected terminal

Figure – Components around Arduino Nano board

Arduino Nano board is not ideal solution to acheive extremely low power consumption, main reason is FTDI USB-to-

serial converter which is always powered. To decrease the power I disconnected all unnecessary LEDs. I have noted

that excessive current might be drawn by unpowered H-Bridge and/or Boost converter, therefore I have used power

diodes to isolate power of these domains.

Brief description of software

Basic configuration parameters of the system are left-stop and right-stop azimuths. These are determined by stop

switches / mechanical setup of the rotator and are also determining rotation range. In my implementation it can be

from 180 to 360+180 degrees. During calibration, user turns the rotator to left-stop position, enters the left stop

azimuth, initializes the pulse counter, turns to right-stop position and enters the right-stop azimut.

Summary of the configuration steps:

- Turn to left-stop pozition turn rotation knob once to show L<< and confirm

- Enter left-stop azimuth push rotation knob while „M“, select menu 5. LEFT-STOP AZ

- Initialize pulse counter to 0 push rotation knob while „M“, select menu 1. INIT PULS-CNT

- Turn rotator to right-stop position turn rotation knob once to show >>R and confirm

- Enter right-stop azimuth push rotation knob while „M“, select menu 6. RIGHT-STOP AZ

During the last step all configuration data, including the value of pulse counter, are stored in EEPROM memory. If

EEPROM is empty the display shows alternatively normal menu and alternative menu showing some parameters: L –

left-stop azimuth, R – right-stop azimuth, CNT – pulse counter, Cmax – max. value of counter on right-stop azimuth.

It is possible that wrong azimuth values are shown as these are calculated from non-valid or non-actual parameters.

The parameters can be invalidated by menu item 9. ERASE EEPROM.

As incremental encoder gives only information about relative position it is not possible to determine actual position

after power-up. Therefore I have added menu item 2. STORE ACT. Az, this value is used during power-up, it can be

considered as parking position of the antenna. During normal operation it is always possible to re-calibrate the

rotator by turning it to left-stop position and initializin the counter by menu item 1. INIT PULS-CNT

Other menu items explained:

7. SENSE DELAY - delay in miliseconds during which pulse evaluation is ignored in order to avoid false detection of

stuck rotator state. Note that pulses are counted in all cases, only their evaluation is delayed.

8. DEBUG 0/1/2 - switching between various debug levels.

Menu items 3. OUT-A TOGGLE a 4. OUT-B TOGGLE re toggling user outputs A or B

The last menu item 10.EXIT MENU leave menu and returns to default view where actual and required azimuth are

shown. In upper right corner actual state or intended state is shown:

MENU - enter to menu

>>R - turn to right-stop position; rotation can be interrupted by pressing push button

L<< - turn to left-stop position; rotation can be interrupted by pressing push button

>Az - turn to required azimuth; rotation can be interrupted by pressing push button

Az< - turn to required azimuth; rotation can be interrupted by pressing push button

Serial console to control rotator

I have implemented simple interpreter to allow rotator control over serial console. If any number different than 0 is

entered followed by [Enter] rotator will turn to given azimuth. During rotation actual azimuth is shown periodically,

rotation can be interrupted by pressing [Enter].

Other commands are executed by entering single letter followed by [Enter], by pressing ‘h’ practical Help is shown:

Figure – Rotator control over serial console

Serial console is connected by USB to serial converter which is on Arduino Nano board. In terminal program, I use

Putty, it is necessary to configure proper serial port COMx with parameters 9600bps, 8N1. Note that after succesful

connection the Arduino Nano is reset, take this into account and check if initial azimuth is correct!

Bill of Materials

Dual H Bridge DC Stepper Motor Drive Controller Board Module (L298N, ST Microelectronics)

XL6009E1 Step-up Adjustable Voltage Regulator 5V / 12V / 24V (XL6009, XLSemi)

Arduino Nano V3.0 ATmega328P CH340G 5V 16M Micro-controller Board

TCST1230 Transmissive Optical Sensor with Phototransistor Output (Vishay)

FOD817 4-Pin DIP Phototransistor Optocoupler (OnSemi)

1602A-1 LCD Module 16x2 (SHENZHEN EONE Electronics Co., Ltd)

EC11E1820402 Alps incremental encoder (18imp / rotation), or similar

There are other standard components used - such as NPN transistors, resistors, diodes, connectors etc.

Actual version of Arduino program/project together with 3D model of housing and control knob can be found on

http://om2ju.com, tab #hamradio.

http://om2ju.com/
http://om2ju.com/

